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a b s t r a c t

The use of indicator species is popular in ecological monitoring and management. In recent years, new
methods to improve the quality and application of indicator data have been proposed and developed.
Here we propose the use of detection probability in the selection and application of indicator species. We
evaluated environmental and observer factors believed to affect detection of potential species. Observer
effects were the most evident factor and may necessitate the greatest consideration in the use of indicator
species. Our results call attention to the fact that raw counts are far from accurate and that the use of
detection probability can and should be incorporated into sampling protocols, species selection, and
the allocation of effort for projects that use indicator species as part of monitoring and management
programs.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Indicator species are used by conservation practitioners as an
efficient means of collecting and communicating information that
reflects population trends or the health of communities and ecosys-
tems (Canterbury et al., 2000; Chase et al., 2000; Browder et al.,
2002; Fleishman et al., 2005). As the use of indicator species has
grown, a list of proposed criteria has developed that includes scale,
ease of use, cost, and sensitivity to change or stress (Landres et al.,
1988; Noss, 1990; Dale and Beyeler, 2001; Bani et al., 2006; Gregory
et al., 2008; Mandelik et al., 2010). One measure not adequately
addressed is detectability, a measure of the likelihood of observing
an individual of a species (Kéry, 2010).

Ideally, probability of detection would vary little and observed
counts would reflect only the ecological condition the species is
expected to indicate. However, in reality, observed changes in
occupancy or abundance may reflect other factors in addition to
deterministic stressors (MacKenzie et al., 2006). Factors that may
influence detectability include weather condition, observation dis-
tance, and observer skill. These variables may play a greater or
lesser role depending on the species and associated behaviors or
habitats. For example, a bird species with a faint song may be a less
reliable indicator in a region prone to high winds whereas a bird
species with a complex or indistinct call may be subject to more
frequent identification error. Moreover, species that vocalize or are
active earlier in the morning might have greater detectability in
counts near sunrise and the detectability of a species’ color pat-

∗ Corresponding author. Tel.: +1 402 472 8544; fax: +1 402 472 2946.
E-mail address: jquinn2@unl.edu (J.E. Quinn).

tern against background vegetation may vary with cloud cover and
amount of available sunlight.

Explicitly including detectability in the selection and applica-
tion of indicator species would result in outputs that are more
reliable and increase the value of data collected. To reduce the
uncertainty of conclusions drawn from the use of indicator species,
we consider the application of detectability in use of birds as indica-
tor species, specifically how detectability can be incorporated into
species selection, allocation of effort, and sampling protocols.

We present the evaluation of avian indicator species proposed
as part of a farmland biodiversity assessment program designed
for the Great Plains of North America (Quinn et al., 2009). Birds
are frequent indicator species due to perceived ease of detection,
sensitivity to environmental change, and broad presence in the
environment (Jarvinen and Vaisanen, 1979; O’Connell et al., 2000;
Browder et al., 2002). The described methods, however, would
apply to other organisms deemed suitable for a research or moni-
toring program.

2. Material and methods

Birds were sampled at 335 points across twenty-two farms in
the central Great Plains of the United States in 2007, 2008, and
2009. Surveys were conducted May 15–July 15 in all 3 years. Birds
were surveyed at each point during the first 4 h after sunrise on two
consecutive mornings. Each point was sampled twice each morning
during separate time periods. Counts were 5 min in duration and all
birds heard or seen were recorded by species. The order and time
of day of counts were varied randomly. Twelve locally-breeding
species (Table A.1), out of 104 detected at least once, were identified
as possible indicators of habitat quality and ecosystem health of

1470-160X/$ – see front matter © 2011 Elsevier Ltd. All rights reserved.
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Table 1
Summary statistics for detection covariates.

Mean (Median) ± SD Min. 1st Qt 3rd Qt Max.

Average wind speed (meters per second) 1.3 (1.0) ± 1.2 0.0 0.4 1.9 8.4
Percent cloud cover 37 (20) ± 37 0 0 70 100
Time (minutes since midnight) 475 (473) ± 64 349 421 525 640

Table 2
Null, model average, and model average range probability of detection.

Species Null Mod. avg. Mod. avg. range

Bell’s Vireo 0.28 0.25 0.31
Brown-headed Cowbird 0.11 0.18 0.14
Brown Thrasher 0.12 0.14 0.26
Dickcissel 0.41 0.43 0.30
Eastern Kingbird 0.08 0.10 0.13
Field Sparrow 0.27 0.27 0.38
Horned Lark 0.11 0.11 0.12
Killdeer 0.12 0.15 0.20
Northern Bobwhite 0.20 0.22 0.43
Red-bellied Woodpecker 0.17 0.16 0.63
Red-winged Blackbird 0.21 0.25 0.23
Western Meadowlark 0.30 0.34 0.47

working farmland. Selection was based on the individual species
representation of habitat type and perceived sensitivity to land use
change (Poole, 2005).

Covariates thought to affect detection were recorded for each
count (Table 1). Start time was recorded at the initiation of each
count and later adjusted to minutes since midnight. Cloud cover
was estimated at intervals of ten between 0 and 100%. Average
wind speed was recorded for 10 s prior to each count using a
Kestrel® 1000 Pocket Wind Meter (Boothwyn, PA). Four different
observers with different levels of experience conducted all counts.
All observers received the same core training that included pre-
season listening sessions and identification quizzes.

We used negative binomial–binomial N-mixture models (Royle,
2004) and the unmarked package (Fiske et al., 2010) for the soft-
ware package R V2.12.0 (R Development Core Team, 2010) to
estimate detection probabilities of avian species in the central Great
Plains of North America. N-mixture models use spatial and tempo-
ral replication to estimate detectability independent of abundance.
Land use and land cover types can be included as covariates of

abundance. However, for our analysis of detection probability,
abundance covariates were not included in the model selection
process.

For each species, we tested 16 a priori model combinations
of start time, wind speed, cloud cover, and observer. Parametric
bootstrapping was used to evaluate goodness of fit. We used the
negative binomial–binomial mixture distribution due to observed
overdispersion of the data. Models were tested using Akaike’s infor-
mation criterion (AIC) model selection (Burnham and Anderson,
2002). Models were ranked and compared by delta AIC. Competing
models describing variation in detection probability of proposed
indicator species were sorted according to their Akaike weight. The
best models were averaged to estimate detection probabilities of
the selected species. The top models in the 95% confidence set (95%
of Akaike’s weight) for each species were used to identify species
with beneficial detection traits (Burnham and Anderson, 2002).

3. Results

All detection covariates considered were within the 95%
confidence set of at least one species (Table A.1). Parametric
bootstrapping suggested acceptable goodness of fit (Table A.2).
Subsequent examination of model complexity in a confidence set
provided one application of detection probability. Species with sim-
ple top models can be identified as more suitable for application as
indicator species. Bell’s Vireo (Vireo bellii) and Brown-headed Cow-
bird (Molothrus ater) had a single covariate in the top model, with
the respective covariate nested within other top models in the con-
fidence set (Table A.1). Because top models for the two species were
the most parsimonious, it may be worthwhile to give these species
greater consideration as candidates for use as indicators, though
the top models did not carry sufficient Akaike weight to rule out
competing models. In contrast, the top Northern Bobwhite (Coli-
nus virginianus) model, with 68% of the Akaike weight, had three

Table 3
Parameter estimates (Est.) and standard error (SE) from N-mixture models. Estimates of detection probability are on the logit-scale. Species abbreviations are shown in
Table A.1. Parameter estimates with 95% confidence intervals that do not include zero in bold.

BEVI BHCO BRTH DICK EAKI FISP

Est. SE Est. SE Est. SE Est. SE Est. SE Est. SE

Alpha −0.19 1.08 6.56 18.34 1.12 0.38 1.36 0.15 0.91 0.23 −0.40 0.24
p(Int) −0.72 0.51 −1.26 0.17 −1.63 0.28 0.25 0.24 −2.08 0.30 −0.78 0.30
p(ObsB) 0.00 0.01 −1.02 0.08 −0.83 0.16 −0.52 0.07 −0.43 0.11 −0.05 0.16
p(ObsC) 0.00 0.01 −0.13 0.07 0.59 0.12 0.12 0.06 0.57 0.10 0.50 0.17
p(ObsD) 0.00 0.01 −0.33 0.08 0.26 0.13 −0.30 0.07 −0.72 0.15 −0.08 0.20
p(Start) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
p(Wind) −0.39 0.15 0.01 0.01 −0.25 0.05 −0.09 0.02 0.00 0.01 −0.26 0.07
p(Cloud Cov) 0.00 0.01 0.00 0.00 0.01 0.01 0.00 0.00 −0.01 0.01 0.00 0.01

HOLA KILL NOBO RBWO RWBL WEME

Est. SE Est. SE Est. SE Est. SE Est. SE Est. SE

Alpha −1.28 0.13 −0.06 0.26 0.76 0.32 3.93 6.28 0.23 0.10 0.43 0.15
p(Int) −2.76 0.30 −1.89 0.32 −0.41 0.44 0.37 0.61 −1.03 0.13 0.63 0.34
p(ObsB) −0.28 0.13 −0.63 0.18 −0.26 0.14 −0.28 0.24 −0.50 0.07 −0.94 0.10
p(ObsC) 0.14 0.12 0.46 0.15 0.87 0.14 1.52 0.19 0.46 0.07 0.52 0.09
p(ObsD) −0.15 0.12 −0.22 0.17 0.20 0.15 0.95 0.25 −0.03 0.09 −0.47 0.12
p(Start) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
p(Wind) −0.01 0.01 0.08 0.04 −0.24 0.06 −0.84 0.11 −0.07 0.02 −0.01 0.01
p(Cloud Cov) 0.05 0.02 0.00 0.01 0.00 0.00 −0.02 0.01 0.00 0.00 −0.02 0.01
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Fig. 1. Estimated variation in detection probability and 95% confidence interval due
to change in wind speed.

model covariates. The greater number of covariates affecting detec-
tion probability of the Northern Bobwhite suggests this species may
not be as suitable.

In addition to the total number of detection covariates, average
detection probability and range of detection probability (Table 2)
can identify species more suitable for use as indicator species. Aver-
age estimated detection probability can be used to identify species
with a greater probability of detection that would require the least
amount of sampling effort when using replicated counts over time
(Field et al., 2002) or calculate the number of visits needed to obtain
a predetermined acceptable probability of detection for an indi-
vidual of a species accurately. This step decreases the likelihood
of false negatives that reduce value of the data (Fleishman and
Murphy, 2009). Species with a narrow range of detection proba-
bility (e.g., Eastern Kingbird (Tyrannus tyrannus) or Horned Lark
(Eremophila alpestris)) may serve as better indicator species because
their probability of detection is relatively constant, allowing greater
confidence in the allocation of sampling effort. However, if a species
has a low detection probability, whether due to home range size or
elusiveness, availability may be a factor, and increasing allocation
of effort through more frequent sampling may be necessary to be
confident in estimates of abundance.

Consideration of species’ detection probability in respect to
cloud cover, start time, wind, and observer provided a means to
identify potential indicator species that demonstrate minimal vari-
ation in response to detection covariates of concern in individual
monitoring efforts. It is well known that probability of detection
decreases for most bird species as the morning passes (Ralph et al.,
1995). However, perhaps because counts were limited to within 4 h
of sunrise, observed variation in detection was minimal (Table 3).
This may rule out start time as a criterion when counts are con-
strained to early mornings. Additionally, no trends emerged for
cloud cover, though limited variation was evident for a small num-
ber of species (Table 3).

Detection probability declined with increased wind speed for
ten of twelve species (Table 3). Strong variability in detection
probability with respect to wind speed (e.g., Red-bellied Wood-
pecker (Melanerpes carolinus), Fig. 1) could limit a species’ value
as an indicator in a windy region like the Great Plains. Consistent
detectability in relation to wind speed, as demonstrated by the
Eastern Kingbird, may suggest a species is more suitable indica-
tor in windy regions. A moderate detection probability in response
to wind (e.g., Western Meadowlark (Sturnella neglecta), Fig. 1) may
not rule a species out, but would require the collection of detection
covariates as part of monitoring efforts.

Fig. 2. Estimated variation in detection probability and 95% confidence interval due
to observer.

Despite core training undertaken by all observers before each
research season, detection probability of individual species varied
among observers (e.g., Brown Thrasher (Toxostoma rufum), Fig. 2a)
with one exception, the Bell’s Vireo (Fig. 2b). If a monitoring pro-
gram has a revolving set of observers, unaccounted for variation
because of observer error could bias results. Therefore, if citizen sci-
entists are undertaking the primary data collection, a species with
a constant probability of detection among observers is highly desir-
able. Given, however, that only one species demonstrated minimal
variation, accounting for observer variation will likely need to occur
in the analysis stage of a monitoring program. Ultimately, given
relative ease of adjusting sampling effort for environmental covari-
ates of detection (e.g., not counting during periods of high wind),
accounting for observer effects may be the greatest challenge, but
provide for the greatest return when selecting and using indicator
species.

4. Discussion

Our results call attention to the fact that raw counts may not
accurately represent true abundance patterns and that there is
value in including detection covariates as a criterion in the selection
and use of indicator species. Moreover, our results suggest that it is
feasible to identify species more suitable for use as indicator species
based on consideration of detectability and detection covariates.
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Given that many environmental covariates can be controlled for,
observer effects may necessitate the greatest consideration in the
use of indicator species.

While we have focused on detection probability, an indicator
species needs to remain sensitive to environmental change or dis-
turbance (Dale and Beyeler, 2001). As such, it will be important
to address the response of a species to ecological conditions of
interest. For example, the Killdeer (Charadrius vociferus) has a mod-
erately high detection probability, but as an indicator species is not
representative of high quality agricultural habitat. Consequently,
it is unlikely to be a suitable indicator of agroecosystem health.
In contrast, a rare or reclusive species may provide more infor-
mation about a population or ecosystem; however, it will likely
require added costs of repeated visits and additional data collec-
tion. The added costs of time or funds required to make multiple
visits to a site may be worth the price if greater knowledge of the
reclusive species provides a more accurate measure of local con-
ditions (Field et al., 2004, 2005). Ultimately, research participants,
perceived costs, and/or project goals will dictate an appropriate
balance. These decisions will need to be made on a case-by-case
basis for different projects, species, and ecosystems.

We believe that when possible, given the moderate to low prob-
ability of detection for many of the observed species, repeated
surveys followed by analysis with detection models (Royle, 2004)
will improve the quality of data produced. This requires additional
time, training, and data collection as part of any local monitor-
ing program that incorporates indicator species. However, use
of detectability covariates and repeated visits when gathering
and analyzing data will greatly improve its value. Inclusion of
detectability has become standard practice in studies of avian habi-
tat use (Royle et al., 2005; MacKenzie et al., 2006) and monitoring
(Barbraud and Thiebot, 2009) and should become the norm in the
selection and use of indicator species.

5. Conclusion

Although detectability has been alluded to in the literature
of indicator species (Bryce et al., 2002; Bani et al., 2006) and

acknowledgement given that perceived absence of a species from
a habitat is of less value than a confirmation of a species pres-
ence (Fleishman and Murphy, 2009), detectability is not explicitly
stated as a criterion in the evaluationprocess. This omission may
result in incorrect conclusions drawn from data sets that do not
account for variation in detectability. Additionally, monitoring
programs are presented with the challenge to collect data over
extended periods, under varied conditions, and with revolving
participants. Detectability will be an important point of consider-
ation to include as use of monitoring and adaptive management
increases.

Given the demonstrated variation in probability of detection,
consideration and use of detectability parameters to reduce bias
and improve precision will validate and increase the value of
data generated from monitoring programs, better informing future
management and policy decisions (Lindenmayer, 1999). As such,
it is essential to address issues relating to detectability if indica-
tor species are going to achieve the scientific rigor and reliability
necessary to be defensible by decision-makers. Our work proposes
a framework to assess detection probability in selecting indica-
tor species suitable for ecological and environmental conditions
of interest. Further, it demonstrates that it is possible to identify
species more suitable for use as indicator species by considering
and applying probability of detection.
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Appendix A.

See Tables A.1 and A.2.
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Table A.1
Model selection results for summed AIC weights > 0.95 (n = 572, Wind = Average wind speed, Start = Start time, Obs = Observer, Cloud = Percent cloud cover).

Model K Delta AIC AIC weight

Bell’s Vireo (BEVI) Wind 4 0.00 0.47
Vireo bellii Wind + Start 5 1.95 0.18

Wind + Cloud 5 1.95 0.18
Wind + Start + Cloud 6 3.90 0.07
Null 3 4.78 0.04
Wind + Obs 7 5.75 0.03
Start 4 6.47 0.02
Cloud 4 6.75 0.02

Brown-headed Cowbird (BHCO) Obs 6 0.00 0.48
Molothrus ater Wind + Obs 7 1.34 0.25

Obs + Cloud 7 1.99 0.18
Wind + Obs + Cloud 8 3.33 0.09

Brown Thrasher (BRTH) Wind + Obs 7 0.00 0.42
Toxostoma rufum Wind + Obs + Cloud 8 0.37 0.35

Wind + Obs + Start 8 2.52 0.12
Global 9 2.75 0.11

Dickcissel (DICK) Wind + Obs + Start 8 0.00 0.87
Spiza americana Global 9 3.76 0.13

Eastern Kingbird (EAKI) Obs + Cloud 7 0.00 0.33
Tyrannus tyrannus Obs 6 0.68 0.24

Obs + Start + Cloud 8 1.49 0.16
Wind + Obs + Cloud 8 1.92 0.13
Wind + Obs 7 2.60 0.09
Global 9 3.49 0.06

Field Sparrow (FISP) Wind + Obs 7 0.00 0.52
Spizella pusilla Wind + Obs + Cloud 8 2.00 0.19

Wind + Obs + Start 8 2.08 0.18
Global 9 4.06 0.07
Wind 4 5.25 0.04

Horned Lark (HOLA) Obs + Cloud 7 0.00 0.35
Eremophila alpestris Obs + Start + Cloud 8 0.96 0.21

Wind + Obs + Cloud 8 1.93 0.13
Global 9 2.20 0.12
Cloud 4 2.60 0.09
Start + Cloud 5 3.36 0.06
Wind + Cloud 5 4.59 0.03

Killdeer (KILL) Wind + Obs 7 0.00 0.44
Charadrius vociferus Wind + Obs + Cloud 8 1.76 0.18

Obs 6 1.88 0.17
Wind + Obs + Start 8 3.02 0.10
Obs + Cloud 7 3.72 0.07
Global 9 4.63 0.04

Northern Bobwhite (NOBO) Wind + Obs + Start 8 0.00 0.68
Colinus virginianus Global 9 1.91 0.26

Wind + Obs 7 4.96 0.06

Red-bellied Woodpecker (RBWO) Wind + Obs + Start 8 0.00 0.55
Melanerpes carolinus Global 9 0.44 0.45

Red-winged Blackbird (RWBL) Wind + Obs 7 0.00 0.58
Agelaius phoeniceus Wind + Obs + Cloud 8 1.08 0.34

Wind + Obs + Start 8 4.88 0.05
Obs 6 5.94 0.03

Western Meadowlark (WEME) Obs + Start + Cloud 8 0.00 0.62
Sturnella neglecta Global 9 1.01 0.38
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Table A.2
Summary of parametric bootstrapping (O = original statistic computed from data,
V = vector of 1000 bootstrap samples).

Species SSE.O SSE.V Mean SSE.V SD SSE.V 0.025% SSE.O 0.975%

BEVI 90.0 87.0 14.8 59.4 118.5
BHCO 2170.8 2261.1 98.5 2073.3 2467.9
BRTH 730.0 743.0 53.5 644.8 848.0
DICK 5952.0 6842.4 451.5 5990.2 7770.2
EAKI 1046.1 1070.2 71.6 933.5 1223.6
FISP 520.2 571.7 92.3 435.4 819.8
HOLA 875.4 923.4 157.0 661.6 1277.4
KILL 515.0 525.7 52.7 426.3 632.3
NOBO 746.7 782.8 64.5 667.9 914.9
RBWO 271.8 273.7 24.0 229.7 321.3
RWBL 4175.7 4582.9 414.2 3793.3 5421.9
WEME 2343.0 2593.7 225.9 2173.9 3060.5
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