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Abstract

Recognizing plants from imagery is a complex task due to their irregular nature. In
this research, three tree species, Japanese yew (Taxus cuspidata Sieb. & Zucc.), Hicks
yew (Taxus x media), and eastern white pine (Pinus strobus L.), were identified using
their textural properties. First, the plants were separated from their backgrounds in dig-
ital images based on a combination of textural features. Textural feature values for
energy, local homogeneity, and inertia were derived from the co-occurrence matrix
and differed significantly between the trees and their backgrounds. Subsequently, these
features were used to construct the feature space where the nearest-neighbor method
was applied to discriminate trees from their backgrounds. The recognition rates for Jap-
anese yew, Hicks yew, and eastern white pine were 87%, 93%, and 93%, respectively.
The study demonstrates that the texture features selected and the methods employed
satisfactorily separated the trees from their relatively complex backgrounds and effec-
tively differentiated between the three species. This research can lead to potentially use-
ful applications in forestry and related disciplines.
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1. Introduction

Recognition of objects is a central and one of the most difficult tasks in com-
puter vision [2,16]. Furthermore, identification of natural objects such as plants
is even more complex [7,13,14]. The primary reason for this is the fact that a
given object (say a plant) does not have a fixed shape. Multiple instances of
a given species of a plant are similar in some core aspects, but a simple template
matching will not be adequate in most cases [13]. A variety of approaches have
been used to recognize objects in general [1,11,16,18] with varying amount of
success in different domains. In biological studies, shape attributes have been
extensively used in plant identification [3,19]. A combination of size, shape,
and location data were successfully used in recognizing plants [17]. Optical
or spectral properties of plants in digital images have also been used for isola-
tion of plants from their backgrounds [4,10]. Gougeon and Leckie have exten-
sively studied the problems of identification of tree crown of individual species
from high resolution satellite images [6,5]. In this research we explore the iden-
tification of tree species using frontal views. This will also have many applica-
tions in forestry [5]. Sensor networks of various kinds have been proposed in
many different applications. It is now conceivable to have a network of sensors
(cameras) at remote sites to monitor the growth of plants or trees. It is there-
fore important to develop a good understanding of the effectiveness of machine
vision techniques in different applications. Fig. 1 shows some sample trees for
three different species.
Fig. 1. Sample images for the three tree species. (a) Japanese yew, (b) Hicks yew, and (c) eastern
white pine.
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One critical issue that must be considered is that shape features and optical
properties of plants vary with the stage of growth [17,19], and the light condi-
tions [4] when the images are taken. According to [12], textural analysis is pos-
sible on both statistical and structural levels. In this study, several texture
features were derived from the co-occurrence matrix of grayscale images,
because these features do not suffer from the limitations associated with the
shape and optical properties of plants. Statistical analysis of these texture fea-
tures was performed, and the features that showed significant differences
between trees and their backgrounds were selected for texture segmentation
and tree identification.

2. Materials and methods

2.1. Study site and tree species

Three tree species, Japanese yew (Taxus cuspidata Sieb. & Zucc.), Hicks yew
(T. x media), and eastern white pine (Pinus strobus L.), were grown at the
Landscape Services Nursery at the University of Nebraska, Lincoln. Trees
were 5- to 8-years-old and 0.5–1 m tall at the time of the study. Background
material was a combination of wood chips, grass and trees.

2.2. Image acquisition and preprocessing

Seventy five (75) color color images of trees growing in the field were
recorded using a Sony Video Camera Recorder (Model No. CCD-V5000).
Images of 25 different trees for each species were transferred to a captured into
a UNIX SUN SPARC station in the Computer Vision and Image Processing
Laboratory of Computer Science Department at the University of Nebraska,
Lincoln. Finally the 24 bit true color images were converted to 8 bit grayscale
images. In this study, histogram equalization was used to enhance the degree of
contrast between the different features.

There are several reasons for using grayscale images instead of color. Using
color images means larger amount of data resulting in longer computation
times. More significantly, use of color for trees of same or similar species does
not significantly help in classification. The three species considered here have
vary similar color profile. Furthermore, depending on the growth, moisture
availability would change the ‘‘greenness’’ of the leafy part of the plant and
would further complicate the use of color.

2.3. Feature extraction

Feature extraction was used to extract relevant features from the images
resulting in quantitative information for each tree. The approach employed
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in this study was to use statistical texture analysis to determine a set of mea-
sures to provide object-background as well as object–object discrimination.
The gray level spatial dependence approach characterizes texture by the co-
occurrence of its gray levels [8]. The definition and construction of the co-
occurrence matrix are documented in many text books including the work
by [11]. The co-occurrence matrices are derived from the grayscale version of
the original 24 bit true color image. The co-occurrence matrices are computed
for each window (region or token) around each pixel over the images both in
training and testing steps. Window size can be determined by the user, and was
chosen as 5 by 5 pixels.

The co-occurrence matrix is a second order statistic that measures gray level
variation in an image. It indicates the joint probability of gray level occurrence
at a certain displacement (distance and angle) in an image.

Given a displacement (d) and angle (h), the co-occurrence matrix is given by

Cd;h½i; j� ¼ ½r; c�jI ½r; c� ¼ i ^ I ½r þ d cosðhÞ; cþ d sinðhÞ� ¼ jf gj j
where I[r,c] is the intensity at the image at location (r,c). A normalized co-
occurrence matrix, Nd,h, is derived from the above matrix by dividing each ele-
ment by the sum of all the values in the matrix.

The choice of 5 · 5 window is based on several factors. A larger window size
would result in longer computation time without necessarily improving the
results. The goal is to extract the texture information by analyzing the relation-
ships between the neighboring pixels. Our experiments showed that window of
this size achieves a good balance between the two competing needs (computa-
tional efficiency and effectiveness). While scale does play a role in texture, in
this case, this window size should still be effective for images at different reso-
lutions as well.

The co-occurrence matrix is then normalized [10] and texture features such
as energy, local homogeneity, and inertia are derived from it. These features are
widely used in literature [11,16] and have proven to be effective in similar appli-
cations [10]. The selection of these features is also motivated by careful obser-
vations of the images.

Given the co-occurrence matrix, we can compute the three texture parame-
ters used in this research as follows:
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2.4. Training process

Manual training is used in this study. Three sets of images are used for the
three tree species. Each set consisted of 10 grayscale images. Each image in
the training set was manually separated into background and tree subimages.
The feature values are then computed for each point in the two subimages
using a 5 · 5 window. The average values for each feature is computed for
the background and the tree subimage. One way analysis of variance
(ANOVA) was used to arrange the data. In the statistical analysis, two treat-
ments, namely, background and tree, were considered. The difference in feature
values between two treatments for each type of plant images was tested using
the General Linear Model (GLM) of SAS [15]. The features that were signifi-
cantly different statistically (as determined by the GLM model) between the
tree part and background were used to construct the feature space. Finally
the standard feature values of both backgrounds and tree parts in each training
set were calculated as the mean of the corresponding values computed from all
the images in that training set.

2.5. Testing process

For each tree species, the test set consisted of 15 grayscale images of different
trees (not used for training). The testing process consisted of two steps: texture
segmentation and tree identification.

Texture segmentation: For each test image, the values of the selected features
were calculated based on the normalized co-occurrence matrix for each 5 by 5
window. Given the standard feature values obtained in the training process, the
simple Euclidean distance [11] to the given background and tree part were cal-
culated in the feature space. The pixel was then classified as either background
or tree part using nearest-neighbor classification method. If the pixel was clas-
sified as background, the pixel value was set to 255 (background).

Tree identification: After texture segmentation, some background parts may
be misclassified as tree parts, and some tree parts may be misclassified as back-
ground parts. The goal of the next step was to correct the misclassified areas or
regions. The Blob Coloring algorithm was employed to compute the connected
components [11,16]. This is a two-pass algorithm that assign a label (or region
number) to each pixel based on a small local neighborhood around the pixel.
Assuming that the largest connected component corresponds to a tree part
in a digital image, the other connected components therefore correspond to
the background part, and the values of all the pixels within those regions are
assigned to be the background. The assumption that the largest connected
component corresponds to the tree part in a digital image is reasonable and
holds true in most of the cases. If the tree part is not the dominant part in
the original image, the image can to be cropped to meet this assumption. To
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correct the misclassified tree parts which result in holes in a tree crown, the
Blob Coloring algorithm was applied again to the image whose background
had been corrected.

At this point, we have a large blob corresponding to the tree crown and a set
of smaller blobs inside this that are classified as background. Many of these
smaller blobs are insignificant and can be eliminated using simple morpholo-
gical operations. The erosion algorithm [9,16] was then applied to the regions
or connected components which had been classified as background in the tree
part. The optimal number of erosion steps was empirically determined during
the training process. The optimal number of erosion steps for Japanese yew,
Hicks yew, and eastern white pine were determined to be 4, 8, and 8, respec-
tively. During the sequence of erosion steps, the size of each region within
the tree part that had been classified as background became smaller and smal-
Table 2
Output from general linear models (ANOVA) for testing the difference in feature values between
tree parts and backgrounds

Tree species Dependent
variable

Degrees
of freedom

Mean square F-value Probability
value

Japanese yew Energy 1 0.0004966 6.51 0.0213
Local fomogeneity 1 0.0104710 33.73 0.0001
Inertia 1 2986.3310 111.18 0.0001

Hicks yew Energy 1 0.0007401 67.25 0.0001
Local homogeneity 1 0.0418870 114.93 0.0001
Inertia 1 5981.5660 230.82 0.0001

Eastern white pine Energy 1 0.0007686 23.79 0.0002
Local homogeneity 1 0.0495598 87.35 0.0001
Inertia 1 6065.3874 231.47 0.0001

Table 1
Mean feature values

Tree species Features Feature values (SE)

Tree Background

Japanese yew Energy 0.046(0.004) 0.035(0.001)
Local homogeneity 0.212(0.006) 0.164(0.005)
Inertia 31.068(1.589) 56.828(1.856)

Hicks yew Energy 0.043(0.001) 0.030(0.001)
Local homogeneity 0.231(0.008) 0.135(0.002)
Inertia 28.243(1.734) 64.702(1.658)

Eastern white pine Energy 0.045(0.002) 0.032(0.001)
Local homogeneity 0.246(0.010) 0.141(0.004)
Inertia 24.938(2.243) 61.651(0.889)



Fig. 2. Separation of tree and background in the texture feature space. (a) Japanese yew, (b) Hicks
yew, and (c) eastern white pine.
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ler, and at each step, some of the regions in the tree part of the image would be
closed. Those regions that were not closed up at the final step were determined
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as holes. It should be noted that this number can either be determined experi-
mentally for each species as we have done or set to a reasonable number that is
constant across all species of similar structure. In our case using 6 or 8 steps in
all three types of species yielded very similar results.
3. Results and discussions

3.1. Statistical texture analysis

The mean feature values of both tree parts and backgrounds for each tree
species are shown in Table 1. The results from the one-way variance analysis
of the GLM model indicated the difference in mean value of each feature is sta-
tistically significant between tree part and background (Table 2). Consequently
three texture features, energy, local homogeneity, and inertia, were used to
construct the feature space where the texture was segmented using the near-
est-neighbor method [11,16]. Based on the feature values computed from the
training images in each training set, there are two distinguishable clusters in
feature space, namely tree and background (see Fig. 2).

3.2. Texture segmentation, tree identification, and testing results

Figs. 3–5 show the sequence of processing steps for the three tree species
shown in Fig. 1. Figs. 3(a), 4(a), 5(a) show the gray scale images for the three
Fig. 3. Processing stages for a sample tree (Japanese yew). (a) Original image (grayscale), (b) after
texture segmentation, (c) after connected components analysis, and (d) after morphological
operations.



Fig. 4. Processing stages for a sample tree (Hicks yew). (a) Original image (grayscale), (b) after
texture segmentation, (c) after connected components analysis, and (d) after morphological
operations.

A. Samal et al. / Information Sciences 176 (2006) 565–576 573
trees. After texture segmentation, the resulting images are shown in Figs. 3(b),
4(b), 5(b). Clearly there are some small regions that have been misclassified, but
in general the tree parts are recognized based on the texture features. By apply-
ing the Blob Coloring algorithm, the misclassified background parts were cor-
rected under the assumption that the largest connected component corresponds
to the tree part in the original image (Figs. 3(c), 4(c), 5(c)). After applying Blob
Coloring algorithm again, and the Erosion algorithm to the images whose



Fig. 5. Processing stages for a sample tree (eastern white pine). (a) Original image (grayscale), (b)
after texture segmentation, (c) after connected components analysis, and (d) after morphological
operations.

Table 3
Testing results

Tree Species Number of images
in each testing set

Number of images
with trees being recognized

Recognition rate (%)

Japanese yew 15 13 87
Hicks yew 15 14 93
Eastern white pine 15 14 93
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backgrounds had been corrected, the misclassified tree parts were corrected
and the holes within the tree parts were determined given a number of steps
for erosion (Figs. 3(d), 4(d), 5(d)). The recognition rates of trees were deter-
mined by visually comparing the resulting images with the original images. If
the resulting image was representative of the original image, including tree
crown outline and holes within tree crown, it would be classified as recognized.
If there is a visual error in determining tree outline or holes, it would be clas-
sified as unrecognized. The overall testing results are shown in Table 3. In gen-
eral, the texture features selected and methods employed worked satisfactorily
in separating trees from their backgrounds and in their classification.
4. Conclusions

The most important facts that can be concluded from this study are: texture
features, energy, local homogeneity, and inertia, derived from co-occurrence
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matrices can successfully discriminate some evergreen plants and a relatively
complex background. Co-occurrence statistics offer ease of computation in
addition to reliability. Texture features derived from co-occurrence matrix
may be more reliable than spectral properties in some cases because of their
non-dependence on lighting conditions. A combination of different features
may perform better in separating tree parts from a relatively complex back-
ground in feature space.

Identification of trees from imagery has many practical applications. Inven-
tories of trees in urban landscapes can be made both efficiently and inexpen-
sively using this method. Once trees are identified, volume estimate of trunk
and branches, which are proportional to the amount of biomass can be com-
puted. This is an approximate, but quick estimate of the amount of carbon
sequestration. To determine the best use and practical implications of classifi-
cation, further studies are needed in this area.
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